google ads
Search

Everything you need to know about Computed Tomography (CT) & CT Scanning

Deep Learning: Deep Learning and the Pancreas Imaging Pearls - Educational Tools | CT Scanning | CT Imaging | CT Scan Protocols - CTisus
Imaging Pearls ❯ Deep Learning ❯ Deep Learning and the Pancreas

-- OR --

  • Results: Only 31 of 102 serous cystic neoplasm cases in this study were recognized correctly by clinicians before the surgery. Twenty-two features were selected from the radiomics system after 100 bootstrapping repetitions of the least absolute shrinkage selection operator regression. The diagnostic scheme performed accurately and robustly, showing the area under the receiver operating characteristic curve 1⁄4 0.767, sensitivity 1⁄4 0.686, and specificity 1⁄4 0.709. In the independent validation cohort, we acquired similar results with receiver operating characteristic curve 1⁄4 0.837, sensitivity 1⁄4 0.667, and specificity 1⁄4 0.818.
    Conclusion: The proposed radiomics-based computer-aided diagnosis scheme could increase preoperative diagnostic accuracy and assist clinicians in making accurate management decisions.
    Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images
    Ran Wei et al.
    Technology in Cancer Research & Treatment
    Volume 18: 1-9; 2019
  • “A total of 17 intensity and texture features were selected, showing difference between SCNs and non-SCNs. Typically, the intensity T-range, wavelet intensity T-median, and wavelet neighborhood gray-tone difference matrix (NGTDM) busyness were the most distinguishable.”
    Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images
    Ran Wei et al.
    Technology in Cancer Research & Treatment
    Volume 18: 1-9; 2019
  • “In our retrospective study of 260 patients with PCN, we were surprised to find that the overall preoperative diagnostic accuracy by clinicians was 37.3% (97 of 260), and only 30.4% (31 of 102) of SCN cases were correctly diagnosed. This meant that more than two-thirds of patients with SCN suffered unnecessary pancreatic resection.”
    Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images
    Ran Wei et al.
    Technology in Cancer Research & Treatment
    Volume 18: 1-9; 2019
  • “Furthermore, radiomics high-throughput features containing intensity features, texture features, and their wavelet decomposition forms fully utilized image information and obtained more image details that were hard to discover with the naked human eyes.”
    Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images
    Ran Wei et al.
    Technology in Cancer Research & Treatment
    Volume 18: 1-9; 2019
  • “In conclusion, our study proposed a radiomics-based CAD scheme and stressed the role of radiomics analysis as a novel noninvasive method for improving the preoperative diagnostic accuracy of SCNs. In all, 409 quantitative features were auto- matically extracted, and a feature subset containing the 22 most statistically significant features was selected after 100 boot- strapping repetitions. Our proposed method improved the diag- nostic accuracy and performed well in all metrics, with AUC of 0.767 in the cross-validation cohort and 0.837 in the independent validation cohort. This demonstrated that our CAD scheme could provide a powerful reference for the diagnosis of clinicians to reduce misjudgment and avoid overtreatment.”
    Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images
    Ran Wei et al.
    Technology in Cancer Research & Treatment
    Volume 18: 1-9; 2019
  • “In conclusion, our study proposed a radiomics-based CAD scheme and stressed the role of radiomics analysis as a novel noninvasive method for improving the preoperative diagnostic accuracy of SCNs. In all, 409 quantitative features were auto- matically extracted, and a feature subset containing the 22 most statistically significant features was selected after 100 boot- strapping repetitions. Our proposed method improved the diag- nostic accuracy and performed well in all metrics, with AUC of 0.767 in the cross-validation cohort and 0.837 in the independent validation cohort. This demonstrated that our CAD scheme could provide a powerful reference for the diagnosis of clinicians to reduce misjudgment and avoid overtreatment.”
    Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images
    Ran Wei et al.
    Technology in Cancer Research & Treatment
    Volume 18: 1-9; 2019
  • “In this paper, we adopt 3D CNNs to segment the pancreas in CT images. Although deep neural networks have been proven to be very effective on many 2D vision tasks, it is still challenging to apply them to 3D applications due to the limited amount of annotated 3D data and limited computational resources. We propose a novel 3D-based coarse- to-fine framework for volumetric pancreas segmentation to tackle these challenges. The proposed 3D-based framework outperforms the 2D counterpart to a large margin since it can leverage the rich spatial information along all three axes.”


    A 3D Coarse-to-Fine Framework for Automatic Pancreas Segmentation 
Zhuotun Zhu, Yingda Xia, Wei Shen, Elliot K. Fishman, Alan L. Yuille
arXiv:1712.00201v1 [cs.CV] 1 Dec 2017 

  • “In this work, we proposed a novel 3D network called “ResDSN” integrated with a coarse-to-fine framework to simultaneously achieve high segmentation accuracy and low time cost. The backbone network “ResDSN” is carefully designed to only have long residual connections for efficient inference. To our best knowledge, we are the first to segment the challenging pancreas using 3D networks which leverage the rich spatial information to achieve the state-of- the-art.”

    
A 3D Coarse-to-Fine Framework for Automatic Pancreas Segmentation 
Zhuotun Zhu, Yingda Xia, Wei Shen, Elliot K. Fishman, Alan L. Yuille
arXiv:1712.00201v1 [cs.CV] 1 Dec 2017 

  • “To address these issues, we propose a concise and effective framework based on 3D deep networks for pancreas segmentation, which can simultaneously achieve high seg- mentation accuracy and low time cost. Our framework is formulated in a coarse-to-fine manner. In the training stage, we first train a 3D FCN from the sub-volumes sampled from an entire CT volume. We call this ResDSN Coarse model, which aims to obtain the rough location of the target pancreas from the whole CT volume by making full use of the overall 3D context. Then, we train another 3D FCN from the sub-volumes sampled only from the ground truth bound- ing boxes of the target pancreas. We call this the ResDSN Fine model, which can refine the segmentation based on the coarse result.”


    A 3D Coarse-to-Fine Framework for Automatic Pancreas Segmentation 
Zhuotun Zhu, Yingda Xia, Wei Shen, Elliot K. Fishman, Alan L. Yuille
arXiv:1712.00201v1 [cs.CV] 1 Dec 2017 

  • “This work is motivated by the difficulty of small organ segmentation. As the target is often small, it is required to 
focus on a local input region, but sometimes the network is confused due to the lack of contextual information. We present the Recurrent Saliency Transformation Network, which enjoys three advantages. (i) Benefited by a (recurrent) global energy function, it is easier to generalize our models from training data to testing data. (ii) With joint optimization over two networks, both of them get improved individually. (iii) By incorporating multi-stage visual cues, more accurate segmentation results are obtained. As the fine stage is less likely to be confused by the lack of contexts, we also observe better convergence during iterations.”


    Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for Small Organ Segmentation 
Qihang Yu, Lingxi Xie, Yan Wang, Yuyin Zhou, Elliot K. Fishman, Alan L. Yuille
arXiv:1709.04518v3 [cs.CV] 18 Nov 2017
  • “This paper presents a Recurrent Saliency Transforma- tion Network. The key innovation is a saliency transfor- mation module, which repeatedly converts the segmentation probability map from the previous iteration as spatial weights and applies these weights to the current iteration. This brings us two-fold benefits. In training, it allows joint optimization over the deep networks dealing with different input scales. In testing, it propagates multi-stage visual information throughout iterations to improve segmentation accuracy.”


    Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for Small Organ Segmentation 
Qihang Yu, Lingxi Xie, Yan Wang, Yuyin Zhou, Elliot K. Fishman, Alan L. Yuille
arXiv:1709.04518v3 [cs.CV] 18 Nov 2017
  • “Automatic segmentation of an organ and its cystic region is a prerequisite of computer-aided diagnosis. In this paper, we focus on pancreatic cyst segmentation in abdominal CT scan. This task is important and very useful in clinical practice yet challenging due to the low contrast in boundary, the variability in location, shape and the different stages of the pancreatic cancer. Inspired by the high relevance between the location of a pancreas and its cystic region, we introduce extra deep supervision into the segmentation network, so that cyst segmentation can be improved with the help of relatively easier pancreas segmentation.”


    Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans 
Yuyin Zhou, Lingxi Xie, Elliot K. Fishman, and Alan L. Yuille 
(in) Medical Image Computing and Computer Assisted Intervention − MICCAI 2017
page 222-231
  • “This paper presents the first system for pancreatic cyst segmentation which can work without human assistance on the testing stage. Motivated by the high relevance of a cystic pancreas and a pancreatic cyst, we formulate pancreas segmentation as an explicit variable in the formulation, and introduce deep supervision to assist the network training process. The joint optimization can be factorized into two stages, making our approach very easy to implement. We collect a dataset with 131 pathological cases. Based on a coarse-to-fine segmentation algorithm, our approach produces reasonable cyst segmentation results. It is worth emphasizing that our approach does not require any extra human annotations on the testing stage, which is especially practical in assisting common patients in cheap and periodic clinical applications.”

    
Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans 
Yuyin Zhou, Lingxi Xie, Elliot K. Fishman, and Alan L. Yuille 
(in) Medical Image Computing and Computer Assisted Intervention − MICCAI 2017
page 222-231
  • “The pancreas is a highly deformable organ that has a shape and location that is greatly influenced by the presence of adjacent struc- tures. This makes automated image analysis of the pancreas extremely challenging. A number of different approaches have been taken to automated pancreas analysis, in- cluding the use of anatomic atlases, the loca- tion of the splenic and portal veins, and state- of-the-art computer science methods such as deep learning.”

    Progress in Fully Automated Abdominal CT Interpretation
Summers RM
AJR 2016; 207:67–79
  • “A recent advance in computer science is the refinement of neural networks, a type of machine learning classifier used to make decisions from data. This refine- ment, known generically as deep learn- ing but more specifically as convolutional neural networks, has shown dramatic improvements in automated intelligence applications. Initially drawing attention for impressive improvements in speech recognition and natural image interpretation, deep learning is now being applied to medical images, as described already in the sections on the pancreas and colitis.” 


    Progress in Fully Automated Abdominal CT Interpretation
Summers RM
AJR 2016; 207:67–79
© 1999-2019 Elliot K. Fishman, MD, FACR. All rights reserved.