Florent Tixier, Felipe Lopez-Ramirez, Alejandra Blanco, Mohammad Yasrab, Ammar A Javed, Linda C Chu, Elliot K Fishman, Satomi Kawamoto
Bioengineering (Basel) . 2025 Jan 16;12(1):80. doi: 10.3390/bioengineering12010080.
The WHO grading of pancreatic neuroendocrine neoplasms (PanNENs) is essential in patient management and an independent prognostic factor for patient survival. Radiomics features from CE-CT images hold promise for the outcome and tumor grade prediction. However, variations in reconstruction parameters can impact the predictive value of radiomics. 127 patients with histopathologically confirmed PanNENs underwent CT scans with filtered back projection (B20f) and iterative (I26f) reconstruction kernels. 3190 radiomic features were extracted from tumors and pancreatic volumes. Wilcoxon paired tests assessed the impact of reconstruction kernels and ComBat harmonization efficiency. SVM models were employed to predict tumor grade using the entire set of radiomics features or only those identified as harmonizable. The models' performance was assessed on an independent dataset of 36 patients. Significant differences, after correction for multiple testing, were observed in 69% of features in the pancreatic volume and 51% in the tumor volume with B20f and I26f kernels. SVM models demonstrated accuracy ranging from 0.67 (95%CI: 0.50-0.81) to 0.83 (95%CI: 0.69-0.94) in distinguishing grade 1 cases from higher grades. Reconstruction kernels alter radiomics features and iterative kernel models trended towards higher performance. ComBat harmonization mitigates kernel impacts but addressing this effect is crucial in studies involving data from different kernels.