Ning Ding, Xi-Ao Yang, Min Xu, Yun Wang, Zhengyu Jin, Yining Wang, Huadan Xue, Lingyan Kong, Zhiwei Wang, Daming Zhang
Insights Imaging . 2024 Oct 28;15(1):260. doi: 10.1186/s13244-024-01843-0.
Objectives: To assess the performance of the "dark blood" (DB) technique, deep-learning reconstruction (DLR), and their combination on aortic images for large-vessel vasculitis (LVV) patients.
Materials and methods: Fifty patients diagnosed with LVV scheduled for aortic computed tomography angiography (CTA) were prospectively recruited in a single center. Arterial and delayed-phase images of the aorta were reconstructed using the hybrid iterative reconstruction (HIR) and DLR algorithms. HIR or DLR DB image sets were generated using corresponding arterial and delayed-phase image sets based on a "contrast-enhancement-boost" technique. Quantitative parameters of aortic wall image quality were evaluated.
Results: Compared to the arterial phase image sets, decreased image noise and increased signal-noise-ratio (SNR) and CNRouter (all p < 0.05) were obtained for the DB image sets. Compared with delayed-phase image sets, dark-blood image sets combined with the DLR algorithm revealed equivalent noise (p > 0.99) and increased SNR (p < 0.001), CNRouter (p = 0.006), and CNRinner (p < 0.001). For overall image quality, the scores of DB image sets were significantly higher than those of delayed-phase image sets (all p < 0.001). Image sets obtained using the DLR algorithm received significantly better qualitative scores (all p < 0.05) in all three phases. The image quality improvement caused by the DLR algorithm was most prominent for the DB phase image sets.
Conclusion: DB CTA improves image quality and provides better visualization of the aorta for the LVV aorta vessel wall. The DB technique reconstructed by the DLR algorithm achieved the best overall performance compared with the other image sequences.
Critical relevance statement: Deep-learning-based "dark blood" images improve vessel wall image wall quality and boundary visualization.